Título: | DEVELOPMENT OF A METHODOLOGY FOR PHASE CHARACTERIZATION IN PELLET FEED USING DIGITAL MICROSCOPY AND DEEP LEARNING | ||||||||||||
Autor: |
THALITA DIAS PINHEIRO CALDAS |
||||||||||||
Colaborador(es): |
SIDNEI PACIORNIK - Orientador KAREN SOARES AUGUSTO - Coorientador |
||||||||||||
Catalogação: | 09/NOV/2023 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64711&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64711&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.64711 | ||||||||||||
Resumo: | |||||||||||||
Iron ore is found in nature as an aggregate of minerals. Among the main
minerals in its composition are hematite, magnetite, goethite, and quartz. Given the
importance of iron ore for the industry, there is a growing interest in its
characterization to assess the material s quality. With the advancement of image
analysis and microscopy research, characterization routines were developed using
Digital Microscopy and Digital Image Processing and Analysis tools capable of
automating a large part of the process. However, it encountered some difficulties,
such as identifying and classifying the different textures of hematite particles, the
different shapes of its crystals, or discriminating between quartz and resin in optical
microscopy images of reflected light. Therefore, from the need to build systems
capable of learning and adapting to possible variations of the images of this
material, the possibility of studying the use of Deep Learning tools for this function
arose. This work proposes developing a new mineral characterization methodology
based on Deep Learning using the Mask R-CNN algorithm. Through this, it is
possible to perform instance segmentation, that is, to develop systems capable of
identifying, classifying, and segmenting objects in images. In this work, two models
were developed: Model 1 performs segmentation of instances for the compact,
porous, martite, and goethite classes in images obtained in Bright Field, and Model
2 uses images acquired in Circularly Polarized Light to segment the classes
monocrystalline, polycrystalline and martite. For Model 1, F1-score was obtained
around 80 percent, and for Model 2, around 90 percent. From the class segmentation, it was possible to extract important attributes of each particle, such as quantity
distribution, shape measurements, size, and area fraction. The obtained results were
very promising and indicated that the developed methodology could be viable for
such characterization.
|
|||||||||||||
|