Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SIMULATION MODELS FOR UNCERTAINTY ANALYSIS IN OIL PRODUCTION FORECASTING ON PLATFORMS IN THE CAMPOS BASIN
Autor: VITOR HUGO PINHEIRO MARQUES
Colaborador(es): FERNANDO LUIZ CYRINO OLIVEIRA - Orientador
ANTONIO ORESTES DE SALVO CASTRO - Coorientador
Catalogação: 06/NOV/2023 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64630&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=64630&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.64630
Resumo:
Oil production has Brazilian and World importance. However, the randomness of the sector results a high variability in oil production forecasts. This variability has a significant impact on decisions. The study analyzes the challenging scenario at geographic Campos basin, in a case applied in a national energy company. The objective is to improve the risk analysis associated with the achievement of oil production targets. Simulation, clustering, and time series forecasting methods are employed, integrating into human judgment. It tries to infer the uncertainties inherent of the activities to increase the accuracy of oil production forecasts, analyze the main risks involved, and subsidize the definition of production targets. A data-driven model is developed, creating a simulator with R language. The data used the years 2017 to 2021, and the projection is made for the year 2022. Human judgment is incorporated into the model during the process, specifying the input parameters to enable experts to make modifications based on the predictions, adding their unique experience and information. The time series analysis eight prediction methods, the results show that the oil potential presents less error than in the production efficiency, and TBATS was the prediction method that obtained the lowest prediction error. The main risks related to the maintenance planning and the entry of new wells are identified through graphical analysis. Finally, the simulator presents a possible solution to help define production goals, it verifies the probability of reaching the goal based on the simulation results.
Descrição: Arquivo:   
COMPLETE PDF