Título: | MATHEMATICAL MODELING OF CURVED RECTANGULAR WAVEGUIDES USING THE VARIATIONAL RAYLEIGH-RITZ METHOD | ||||||||||||
Autor: |
PAULO ROBERTO DE JESUS DANTAS |
||||||||||||
Colaborador(es): |
GUILHERME SIMON DA ROSA - Orientador |
||||||||||||
Catalogação: | 28/AGO/2023 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=63803&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=63803&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.63803 | ||||||||||||
Resumo: | |||||||||||||
This study presents a computational method for modeling
electromagnetic fields in curved rectangular waveguides with uniform cross-section, using the variational Rayleigh-Ritz method. The potential applications
of this research in engineering include the design of feeders for antennas,
microwave mode converter devices, filters, among others. While various
models have been proposed to solve this problem, conventional numerical
techniques based on finite elements, finite differences, and finite volumes
require high computational costs. To overcome these issues, a variational
formulation for solving Maxwell s equations in a local toroidal coordinate
system was developed via a novel functional introduced in this work. The
functional was adapted to handle uniformly bend domains with arbitrary cross-section, and analytical investigations were conducted to confirm its stationary
characteristics. The Rayleigh-Ritz formalism was employed to convert the
functional into an equivalent problem of eigenvalues and eigenvectors using an
expansion in terms of rectangular harmonics of a straight waveguide as basis
functions for modeling a bend rectangular waveguide. A numerical algorithm
was developed in Matlab to validate our model, and the results were compared
against reference perturbational and numerical solutions, demonstrating high
accuracy and lower computational costs.
|
|||||||||||||
|