Título: | MECHANICAL AND THERMAL BEHAVIOR OF POLYAMIDE 11, POLYURETHANE AND POLYETHYLENE USED IN THERMOPLASTIC UMBILICAL HOSES BEFORE AND AFTER UV AGING AND IN SALINE ENVIRONMENT | ||||||||||||
Autor: |
KARINE COSTA MACHADO MENEZES |
||||||||||||
Colaborador(es): |
JOSE ROBERTO MORAES D ALMEIDA - Orientador |
||||||||||||
Catalogação: | 25/JUL/2023 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=63338&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=63338&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.63338 | ||||||||||||
Resumo: | |||||||||||||
Thermoplastic hoses, one of the most important functional components of umbilicals, are
composed of inner liner, synthetic fibre reinforcement and outer sheath manufactured from
thermoplastic material with protection against ozone and ultraviolet (UV) radiation. Polyamide
11 (PA11) and thermoplastic polyurethane (TPU) are generally specified for the sheaths, but
other materials that meet the function can be used, as high density polyethylene (HDPE).
Regardless of the polymer selected for the sheath manufacturing, they need to guarantee the
hose lower layers integrity in an offshore environment due to constant sun exposure and to the
maritime environment. The amount of works that studied and correlated the effects of the
overlap of UV radiation and saline environment on PA11, TPU and HDPE materials is not
large. So, the objective of this work was to compare the mechanical and thermal properties of
PA11, TPU and HDPE, by thermal, spectroscopic, and tensile analysis before and after UV and
salt spray aging, in order to reproduce a degradation mechanism similar to real life of the
thermoplastic hoses and relate the thermomechanical behavior of the three materials after aging
to evaluate the material which best suits the use of the sheath. The materials used to manufacture
the samples in this study were obtained from unused hoses, extruded with commercial PA11,
TPU and HDPE. The virgin sheaths were submitted to infrared (FTIR), thermogravimetric
(TGA), derivative thermogravimetric (DTGA), differential scanning calorimetry (DSC)
analysis and tensile test, to obtain the initial properties of the materials. Then the aging tests
were carried out, which were developed in four cycles. The first cycle was UV aging for 720h
of samples initially in the virgin condition (1st cycle: UV), the second cycle was salt spray
aging for 720h of aged samples from the first cycle (2nd cycle: UV+NS), the third cycle was
salt spray aging for 720h of samples initially in the virgin condition (3rd cycle: NS) and the
fourth cycle was UV aging for 720h of aged samples from the third cycle (4th cycle: NS+UV).
After the end of each aging cycle, the PA11, TPU and HDPE samples were submitted to the same analysis as the virgin samples for comparative purposes. In FTIR, all materials had a
reduction in the intensity of the material characteristic peaks, associated with breaking chain
bonds. In HDPE, there was an increase in the carbonyl index and in TPU, the formation of a
new functional group (C=C stretching in alkenes), associated with oxidation of the polymeric
chain, chain scission and possible crosslinking. Thermal tests showed an increase in the
degradation temperature and a small change in the melting temperature of PA11 associated with
plasticizer extraction; in HDPE and TPU, there was a decrease in the thermal stability of the
materials after aging and no changes in the melting temperature were identified. In the tensile
tests, a decrease in the modulus of elasticity was observed in PA11 and HDPE after aging,
attributed to the process of scission of the polymeric chains and consequent decrease in molar
mass, and in TPU, a tendency to increase tension in deformation of 300% was observed in the
samples aged by UV+NS, NS and NS+UV and a tendency to increase tensile strength in
samples aged by NS+UV, associated with competition between chain scission and crosslinking.
From the results found in this study, it can be concluded that the material least affected by aging
cycles in its chemical structure and thermally was PA11. Regarding the mechanical behavior,
TPU suffered less influence in its properties compared to other materials.
|
|||||||||||||
|