Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: NUMERICAL MODELING USING THE FINITE ELEMENT METHOD FOR CHARACTERIZATION OF FAULT DAMAGE ZONES
Autor: KAROLINE NUNES OLIVEIRA
Colaborador(es): DEANE DE MESQUITA ROEHL - Orientador
ROBERTO JUAN QUEVEDO QUISPE - Coorientador
Catalogação: 24/JUL/2023 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=63323&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=63323&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.63323
Resumo:
Fault zones are geological structures usually present in subsurface. In the oil and gas industry, such structures can have different impacts on geomechanical behavior and on reservoir production. In general, fault zones are composed by a core and a damage zone. The core is responsible for the compartmentalization of reservoirs, acting usually as a barrier for fluid flow. The damage zone is the region of rock deformed adjacent to the core that may directly impact on production, creating preferential flow paths or barriers, depending on the geological features triggered in the deformation process. While the core width can be in the order of centimeters to a few meters, the damage zone width is uncertain. This work presents a methodology for numerical modeling of the generation of damage zones. The methodology is based on finite element method, elastoplastic constitutive models representative of the geomechanical behavior of rocks, and on the application of prescribed displacements to simulate the fault formation process. Several scenarios are analyzed considering the impact of the geomechanical parameters of rocks and the relative distances between two faults to characterize the damage zones. Then, the methodology is used to analyze regions favorable to the trajectory of a production well located between three geological faults. The obtained results demonstrate that the proposed methodology can serve as a basis for characterizing damage zones in geological faults.
Descrição: Arquivo:   
COMPLETE PDF