Título: | MACHINE LEARNING STRATEGIES TO PREDICT OIL FIELD PERFORMANCE AS TIME-SERIES FORECASTING | ||||||||||||
Autor: |
ISABEL FIGUEIRA DE ABREU GONCALVES |
||||||||||||
Colaborador(es): |
SINESIO PESCO - Orientador THIAGO DE MENEZES DUARTE E SILVA - Coorientador |
||||||||||||
Catalogação: | 19/JUN/2023 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62916&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62916&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.62916 | ||||||||||||
Resumo: | |||||||||||||
Precisely forecasting oil field performance is essential in oil reservoir planning and management. Nevertheless, forecasting oil production is a complex
nonlinear problem due to all geophysical and petrophysical properties that may
result in different effects with a bit of change. Thus, all decisions to be made
during an exploitation project must consider different efficient algorithms to
simulate data, providing robust scenarios to lead to the best deductions. To
reduce the uncertainty in the simulation process, recent studies have efficiently
introduced machine learning algorithms for solving reservoir engineering problems since they can extract the maximum information from the dataset. This
thesis proposes using two machine learning techniques to predict the daily oil
production of an offshore reservoir. Initially, the oil rate production is considered a time series and is pre-processed and restructured to fit a supervised
learning problem. The Random Forest model is used to forecast a one-time
step, which is an extension of decision tree learning, widely used in regression and classification problems for supervised machine learning. Regardless,
the restrictions of this approach lead us to a more robust model, the LSTM
RNN s, which are proposed by several studies as a suitable deep learning technique for time series modeling. Various configurations of LSTM RNN s were
constructed to implement single-step and multi-step oil rate forecasting and
down-hole pressure was incorporated to the inputs. For testing the robustness
of the proposed models, we use four different datasets, three of them synthetically generated and one from a public real dataset, the Volve oil field, as a case
study to conduct the experiments. The results indicate that the Random Forest
model could sufficiently estimate the one-time step of the oil field production,
and LSTM could handle more inputs and adequately estimate multiple-time
steps of oil production.
|
|||||||||||||
|