Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: A CHARACTERIZATION OF TESTABLE GRAPH PROPERTIES IN THE DENSE GRAPH MODEL
Autor: FELIPE DE OLIVEIRA
Colaborador(es): SIMON RICHARD GRIFFITHS - Orientador
Catalogação: 19/JUN/2023 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62907&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62907&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.62907
Resumo:
We consider, in this thesis, the question of determining if a graph has a property P such as G is triangle-free or G is 4-colorable. In particular, we consider for which properties P there exists a random algorithm with constant error probabilities that accept graphs that satisfy P and reject graphs that are epsilon-far from any graph that satisfies it. If, in addition, the algorithm has complexity independent of the size of the graph, the property is called testable. We will discuss the results of Alon, Fischer, Newman, and Shapira that obtained a combinatorial characterization of testable graph properties, solving an open problem raised in 1996. This characterization informally says that a graph property P is testable if and only if testing P can be reduced to testing the property of satisfying one of finitely many Szemerédi-partitions.
Descrição: Arquivo:   
COMPLETE PDF