Título: | RELATIVE PERMEABILITY MEASUREMENT AND TWO-PHASE FLOW VISUALIZATION IN MICROMODELS OF VUGULAR POROUS MEDIA | ||||||||||||
Autor: |
JESUS DANIEL FERNANDEZ ESCALANTE |
||||||||||||
Colaborador(es): |
MARCIO DA SILVEIRA CARVALHO - Orientador JORGE ANTONIO AVENDANO BENAVIDES - Coorientador |
||||||||||||
Catalogação: | 13/JUN/2023 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62829&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62829&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.62829 | ||||||||||||
Resumo: | |||||||||||||
It is estimated that 50 percent of world s oil and gas reserves are held in naturally
fractured carbonate reservoirs. One of the biggest challenges in this type
of formation is its heterogeneous nature. Besides the presence of fractures
that longitudinally connect the porous medium, vugs at different scales and
distributions are scattered throughout the porous matrix. These cavities
cause fluid flow characteristics to significantly differ from those of conventional homogeneous pore structure reservoirs and bring the need to evaluate
equivalent petrophysical properties of the heterogeneous medium. In this
study, a microfluidic approach is used to determine the water and oil relative permeability curves and phase distribution profiles in 2D micromodels
of vugular porous media. Steady-state water-oil injection experiments were
performed in these devices at different fractional flows, while monitoring
the dynamics of the pressure drop and visualizing the fluid displacement
at the pore scale. Live-image acquisition through fluorescence microscopy
made it possible to examine the evolution of the saturation of water and
oil phases. The direct comparison between the relative permeability curves of well-characterized vugular porous media and their porous matrix
showed that the incorporation of vugs leads to (i) higher equivalent absolute permeability, especially with longer cavities and higher vug density,
(ii) increased oil occupancy in the porous matrix, due to less efficient water
invasion into the porous matrix, and (iii) higher relative permeability to
water, which flows preferentially through the vugular space. These results
are consistent with the oil-wet nature of micromodels, since the vugs are
offering less capillary resistance to the flow of the non-wetting phase. Our
low-cost microfluidic approach will likely allow us to systematically study
more complex vugular-fractured systems.
|
|||||||||||||
|