Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: CARBONS FROM PYROLYZED BAMBOO AS CONDUCTIVE MATERIALS FOR ELECTRIC, ELECTROTHERMAL AND ELECTROCHEMICAL APPLICATIONS
Autor: LAYNE OLIVEIRA DE LUCAS GONTIJO
Colaborador(es): SIDNEI PACIORNIK - Orientador
OMAR GINOBLE PANDOLI - Coorientador
Catalogação: 06/JUN/2023 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62783&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62783&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.62783
Resumo:
Bamboo is rich in biomass and carbon and, anatomically, is composed of a system of vascular microchannels that are aligned, straight, and parallel to each other. The micro and nanostructures of bamboo can be modified through heat treatment at high temperatures (carbonization/pyrolysis) to obtain electrical properties without losing the 3D structure of the material, which allows the application in electrically conductive electrochemical and microfluidic devices. The present work investigated the influence of heat treatment at high temperatures on the structure and properties of samples of Dendrocalamus giganteous giant bamboo. The samples were subjected to heat treatment under a Nitrogen atmosphere at temperatures ranging from 200 to 1000 degrees C and characterized by TGA, ATR-FT-IR, RAMAN, DRX, XPS, HR-TEM, ICP-EOS, (X-ray computed microtomography), I/V, Cyclic Voltammetry, and IR thermographic analysis. This set of techniques provided structural and chemical information; compositions, the phase transition from cellulose crystal structure to graphic/turbostratic carbon; thermal and electrical conductivity. Samples B-200, B-400, and B-600 showed insulating properties, while B-700 showed resistive behavior (electrical resistivity)= 1.8 x 10-1 (ohms) m and B-1000 showed ohmic behavior (Electric conductivity)= 8.4 x 10 2 S m-1 (siemens)/ meter). The B-700 device was used as a microheater of polar solvents (H2O and ethylene glycol) in a continuous flow regime and heating plate and showed the efficiency of electrothermal conversion in flow mode, structural stability, and electrothermal reproducibility. The microheater and hot plate reached maximum temperatures of 340 degrees C (0.8 A, 6.3 V) and 490 degrees C (2.0 A, 5.3 V), respectively. These results show that the pyrolyzed bamboo materials obtained in this research are promising for applications in supercapacitors, electrodes, heaters, and catalytic microheaters in continuous flow.
Descrição: Arquivo:   
COMPLETE PDF