Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: A CLUSTER-BASED METHOD FOR ACTION SEGMENTATION USING SPATIO-TEMPORAL AND POSITIONAL ENCODED EMBEDDINGS
Autor: GUILHERME DE AZEVEDO P MARQUES
Colaborador(es): SERGIO COLCHER - Orientador
Catalogação: 20/ABR/2023 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62315&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62315&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.62315
Resumo:
The rise of video content as the main media for communication has been creating massive volumes of video data every second. The ability of understanding this huge quantities of data automatically has become increasingly important, therefore better video understanding methods are needed. A crucial task to overall video understanding is the recognition and localisation in time of dierent actions. To address this problem, action segmentation must be achieved. Action segmentation consists of temporally segmenting a video by labeling each frame with a specific action. In this work, we propose a novel action segmentation method that requires no prior video analysis and no annotated data. Our method involves extracting spatio-temporal features from videos using a pre-trained deep network. Data is then transformed using a positional encoder, and finally a clustering algorithm is applied where each cluster presumably corresponds to a dierent single and distinguishable action. In experiments, we show that our method produces competitive results on the Breakfast and Inria Instructional Videos dataset benchmarks.
Descrição: Arquivo:   
COMPLETE PDF