Título: | LYOPHILIZED MICROFLUIDIC MONODISPERSE MICROBUBBLES AS AN ULTRASOUND CONTRAST AGENT | ||||||||||||
Autor: |
PEDRO NIECKELE AZEVEDO |
||||||||||||
Colaborador(es): |
MARCIO DA SILVEIRA CARVALHO - Orientador ARNAUD TOURIN - Coorientador PATRICK TABELING - Coorientador |
||||||||||||
Catalogação: | 28/MAR/2023 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62094&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62094&idi=2 [fr] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=62094&idi=3 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.62094 | ||||||||||||
Resumo: | |||||||||||||
In recent years, the advantages of using ultrasound contrast agents (UCA) with
monodisperse size distribution have been highlighted. Characterized by a coefficient
of variation (CV) lower than 5 percent, monodisperse microbubbles have the potential to
improve the quality of ultrasound images (improving signal-to-noise ratio and
reducing shadowing effects. It also facilitates microbubble resonance frequency
monitoring, opening possibilities in the areas of molecular imaging and non-invasive
pressure measurements. In addition, monodisperse bubbles can optimize the drugs,
genes, and therapeutic gas delivery (e.g. sonotrombolysis, sonoporation, blood-brain
barrier opening).
However, thus far, contrarily to polydisperse bubbles, freeze-drying
monodisperse populations of fresh microbubbles, without deteriorating their
monodispersity, remains a challenge. Thereby, today, monodisperse bubbles can
neither be stored nor transported. This represents a bottleneck for their use in clinical
applications. Attempts made to solve the problem have used toxic solvents, raising
regulatory issues
The objective of the present work was to develop a new freeze-drying
technique for monodisperse microbubbles that did not degrade their size distribution,
or their acoustic properties, without the use of toxic solvents. As the first step of the
project, flow-focusing microfluidic devices were fabricated to produce microbubbles
with highly monodisperse size distribution (CV less than 5 percent). During this step, the
optimization of the microbubble formulation and cryoprotectant materials was
performed. Geometric characterization of two of microbubbles with mean diameters
of 40 Micrometers and 5 Micrometers was performed. With the use of a high-speed camera coupled to
an optical microscope, images of all stages of the freeze-drying process of the
microbubbles were captured and analyzed, aiming to control the size distribution and
production rate of the microbubbles. The steps of the freeze-drying process consisted
of production, collection, freezing, lyophilization, and resuspension. The
development of a new retrieval technique, where the microbubbles were stored in
monolayers, resulted in a drastic reduction of the interaction between the bubbles
during lyophilization. In this way, it was possible to preserve the monodispersity
during the freeze-drying process, resulting in a CV less than 6 percent for the resuspended
microbubble population. Environmental scanning electron microscope (ESEM)
assays demonstrated uniformity in the shells of the freeze-dried microbubbles with
an estimated wall thickness of 70nm.
In the second stage of the project, a characterization of the backscatter acoustic
response of the freeze-dried monodisperse PVA-shelled microbubbles, in
comparison with freshly produced microbubbles, and commercially available
polydisperse microbubbles SonovueTM was conducted. Firstly, the backscatter
acoustic response of the microbubbles was evaluated in two different setups: the
centimetric cell (large container - 45mmx10mmx30mm), and the milli-channel
(confined system in which the liquid is at rest - 10 mmx35 mmx1 mm). Using a
focused acoustic transducer with a frequency of 2.25MHz, the acoustic responses of
the microbubbles, in the form of the fundamental resonance frequency and amplitude,
before and after the freeze-drying process was compared for the bubble population
of 5 Micrometers diameter. It was found that the variation of amplitude and fundamental
resonance frequency of the bubbles were within the experimental uncertainty range,
suggesting that their acoustic properties were preserved. We also observed, in
agreement with the literature, that there is a linear dependence between the
concentration of the microbubble population (without freeze-drying) and the
amplitude of the backscatter coefficient. Subsequently, a comparison of the acoustic
backscatter response was performed for monodisperse and polydisperse bubbles.
Also, in agreement with the literature, we observed an amplitude in the response
signal of the monodispersed bubbles of 8 to 10 times higher than that for the
polydispersed ones, for the same in vitro concentration. It was also possible to
observe the lower uncertainty in monitoring the fundamental resonance peak of the
bubbles and a smaller bandwidth for the monodispersed bubble population. Finally,
using the universal ultrasound matrix imaging approach, developed at Institut
Langevin, the backscatter acoustic response of the freeze-dried monodisperse and
polydisperse population was evaluated in a phantom mimicking tissue. The
preliminary results reinforce the findings from the backscatter acoustic measurements
in the centimetric cell and the milli-channel, in which the monodisperse population
presented a significantly reduced bandwidth in comparison with the wide bandwidth
of the polydisperse population.
The present work successfully presented a new technique developed to freezedry monodisperse microbubbles without degrading their geometrical and acoustic
properties. Thus, we proposed a new generation of ultrasound contrast agents in the
form of a stable freeze-dried powder that can be transported and stored for months
and resuspended for use in clinical applications.
|
|||||||||||||
|