Título: | NANO-TIO2-BASED CHARGE TRANSFER COMPLEXES WITH OXYGEN VACANCIES FOR VISIBLE LIGHT PHOTOCATALYTIC PROCESSES | ||||||||||||
Autor: |
JESSICA GIL LONDONO |
||||||||||||
Colaborador(es): |
BOJAN MARINKOVIC - Orientador |
||||||||||||
Catalogação: | 12/JAN/2023 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61770&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61770&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.61770 | ||||||||||||
Resumo: | |||||||||||||
TiO2-based visible-light-sensitive nanomaterials are widely studied for
photocatalytic applications under UV-Vis radiation. Among the mechanisms of
visible light sensitization, extrinsic oxygen vacancies have been introduced into
TiO2 and charge transfer complexes (CTCs) have been formed between chelating
ligands, such as acetylacetone, and nanocrystalline TiO2 (TiO2-ACAC).
On the other hand, it was found in the literature that nanocrystalline anatasecoupled
glutaric acid (TiO2-GA) exhibits high photocatalytic efficiency under
UV due to its high surface area. However, the influence of extrinsic oxygen
vacancies on the photocatalytic performance of TiO2-based CTCs is unknown
and the sensitization of TiO2 to visible light by functionalization with glutaric
acid (TiO2-GA) and its photocatalytic performance under visible light
radiation have not yet been investigated. In this work, surface/bulk extrinsic
oxygen vacancies were introduced into TiO2-ACAC through calcination at 270
°C under static air, Ar and H2 atmospheres and visible-light-sensitive TiO2-
GA nanomaterials were synthesized via sol-gel and calcined under static air at
270 °C. TiO2-ACAC and TiO2-GA CTCs were characterized by XRPD, FTIR,
TGA, DRS, PL, EPR and XPS techniques. FTIR results proved the formation
of the CTC through bidentate chelating interaction between TiO2 and GA.
TiO2-GA CTCs calcined at 270 °C under static air exhibited a long absorption
tail in the visible light spectrum due to the formation of F+ centers and bulk
Ti3+ defects. Tetracycline (TC) photodegradation using scavengers and the
correlation with EPR-spin trapping highlighted the key role of the superoxide
radical in the TC degradation by TiO2-ACAC and TiO2-GA CTCs under
low-power visible light radiation. The increased extrinsic oxygen vacancies concentration
was not beneĄcial for photocatalytic performance of TiO2-ACAC
CTCs, since bulk extrinsic oxygen vacancies additionally acts as recombination
centers. In fact, the TiO2-ACAC CTC with the lowest extrinsic oxygen vacancies
concentration exhibited the highest photocatalytic performance for TC degradation due to an adequate distribution of extrinsic bulk oxygen vacancies,
which led to the trapped electrons undergoing repeated hopping, reducing
the recombination rates and improving the efficiency in the superoxide radicals
production. On the other hand, the high content of GA organic molecule ineffectively
bounded to the TiO2 surface were not beneĄcial for photocatalytic
performance of TiO2-GA CTCs, since the organic molecule that is not effectively
bounded to the TiO2 surface reduced the active sites in the TiO2-GA
nanostructure. Our Ąndings indicated that TiO2-ACAC and TiO2-GA CTCs
are able to degrade pollutants via interactions with electronic holes and principally
superoxide radicals and also, provided fundamental information about
the influence of surface/bulk extrinsic oxygen vacancies on photocatalytic performance,
lattice parameters, optical and photochemical properties of TiO2-
based CTCs.
|
|||||||||||||
|