Título: | SYNTHESIS AND CHARACTERIZATION OF IRON DISULFIDE (FES2) | |||||||
Autor: |
BRUNO VINICIUS DA FONSECA LIMA AMORIM |
|||||||
Colaborador(es): |
FRANCISCO JOSE MOURA - Orientador EDUARDO DE ALBUQUERQUE BROCCHI - Coorientador |
|||||||
Catalogação: | 21/MAR/2005 | Língua(s): | PORTUGUESE - BRAZIL |
|||||
Tipo: | TEXT | Subtipo: | THESIS | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=6139&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=6139&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.6139 | |||||||
Resumo: | ||||||||
Iron disulfide can be used as an alternative material in
high technological
systems, as an example, solar energy collectors and
cathodic component in
primary and secondary batteries. The present work studies
the kinetics and
thermodynamics of the iron disulfide synthesis in a
fluidized bed reactor for
temperatures varying from 400ºC to 500ºC, operating in the
bubble fluidized
bed regime. It was observed that the synthesis conversion
is much dependent
on control variables: inert gas flow, temperature, sulfur
gas partial pressure,
nature of raw materials and reaction time. In favorable
experimental conditions,
that is 60 minute time reaction and 500ºC temperature, it
was achieved more
than 95% iron oxide conversion in iron disulfide,
generating particle aggregates
with distribution size between 100Âum and 200Âum, uniform
morphology with
ellipsoidal appearance. Manual desagragation leads to small
iron disulfide
particles with 1,4 Âum average size, ideal for
electrochemical use. The iron
disulfide phase quantification was performanced by the
Rietvelt method
associated with Powder Difraction technique. The results
showed that it is
possible, within a pyrometallurgy route, to synthesize iron
disulfide for
electrochemical applications, from cheap and easy
obtainable reagents such as
iron oxide and elemental sulphur.
|
||||||||