Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: IMPACT OF MOLECULAR DIFFUSION MODELS IN THE PREDICTION OF WAX DEPOSITION
Autor: PAULO GUSTAVO CANDIDO DE OLIVEIRA
Colaborador(es): ANGELA OURIVIO NIECKELE - Orientador
IVAN FERNNEY IBANEZ AGUILAR - Coorientador
Catalogação: 21/NOV/2022 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61310&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61310&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.61310
Resumo:
Petroleum is formed by a chain of hydrocarbons, which precipitates in the form of solid particles of paraffin, when its temperature drops below a threshold known as Wax Appearance Temperature (WAT). These particles can be deposited on the inner walls of the pipelines, obstructing the flow, which can generate losses in the order of several millions of dollars. For this reason, the ability to predict and control wax deposition in future events is of fundamental importance for both designers and operators of pipelines. In an attempt to deal with this problem, a great effort has been made by the scientific community aiming to improve wax deposition prediction methodologies. Often, the modeling of species diffusion is performed using Fick s law, valid for binary mixtures, although the hydrocarbons present in the oil form a multicomponent solution. The present work proposes to evaluate the species mass diffusive flux employing the Stefan-Maxwell model, compatible with multicomponent systems. To determine the axial and temporal evolution of the wax deposition thickness, the flow was modelled as a liquid/solid mixture and the conservation equations of energy, mass, linear momentum and species continuity were solved coupled with the thermodynamic model of multiple solid solutions, to determine the paraffin precipitation. The conservation equations were solved using the open-source software OpenFOAM (trademark). A comparison of the predictions obtained with the Fick and Stefan-Maxwell models with experimental data showed that at the beginning of the deposition process, the impact of diffusive model is negligible. However, it was observed that as time passes, the Stefan-Maxwell model predicts a greater increase in the concentration of heaviest species inside the wax deposit when compared to the prediction of Fick s law
Descrição: Arquivo:   
COMPLETE PDF