Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: GLYCINE RADIOLYSIS BY KEV: HE IONS STUDIED BY INFRARED SPECTROSCOPY
Autor: IGOR ULRICHSEN CAMARGO PEREIRA
Colaborador(es): ENIO FROTA DA SILVEIRA - Orientador
RAFAEL MARTINEZ RODRIGUEZ - Coorientador
Catalogação: 27/OUT/2022 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=60979&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=60979&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.60979
Resumo:
Life may have originated on Earth from prebiotic molecules that arrived brought by extraterrestrial bodies. Fragments analysis of Murchison meteorite suggests that it is made of Solar System (SS) primitive material before the beginning of nowadays terrestrial life. In its interior, 17 primary amino acids and 13 sugars were found. Knowing that amino acids, building blocks of proteins, are fundamental in the composition of all organisms, the academic community suggests the possibility of an evolution theory based on exogen principles. A major question is how the prebiotic material could survive billions of years in the interplanetary medium. Considering that α particles with energy of about 1 keV are very abundant in the SS, this work aims to determine experimentally the glycine radioresistance. Thus, the different radiation effects due to this interaction, like sputtering and radiolysis, is studied. Experiments were performed at the Van de Graaff Laboratory of PUC-Rio, using a He+ beam produced by a keV accelerator. Glycine films were prepared and irradiated by the He+ beam ions with energies of 0.5, 1.0, 1.5 and 2.0 keV. Infrared spectroscopy (FTIR) was used to analyze the irradiation effects. Experimental data show that Glycine destruction cross section depends on the beam energy and on sample temperature. The energy dependence indicates that at low energies, glycine absorbance decay faster than at higher energies. Additionally, this research intends to find out if daughter molecules arise after Glycine irradiation with α keV particles. The TRIM-extended model was developed for modelling the experimental data.
Descrição: Arquivo:   
COMPLETE PDF