Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: QUALITY ENHANCEMENT OF HIGHLY DEGRADED MUSIC USING DEEP LEARNING-BASED PREDICTION MODELS
Autor: ARTHUR COSTA SERRA
Colaborador(es): SERGIO COLCHER - Orientador
Catalogação: 21/OUT/2022 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=60905&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=60905&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.60905
Resumo:
Audio quality degradation can have many causes. For musical applications, this fragmentation may lead to highly unpleasant experiences. Restoration algorithms may be employed to reconstruct missing parts of the audio in a similar way as for image reconstruction - in an approach called audio inpainting. Current state-of-theart methods for audio inpainting cover limited scenarios, with well-defined gap windows and little variety of musical genres. In this work, we propose a Deep-Learning-based (DLbased) method for audio inpainting accompanied by a dataset with random fragmentation conditions that approximate real impairment situations. The dataset was collected using tracks from different music genres to provide a good signal variability. Our best model improved the quality of all musical genres, obtaining an average of 13.1 dB of PSNR, although it worked better for musical genres in which acoustic instruments are predominant.
Descrição: Arquivo:   
COMPLETE PDF