Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: INFORMATION EXTRACTION FROM LEGAL OPINIONS IN BRAZILIAN PORTUGUESE
Autor: GUSTAVO MARTINS CAMPOS COELHO
Colaborador(es): MARCO ANTONIO CASANOVA - Orientador
Catalogação: 03/OUT/2022 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=60691&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=60691&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.60691
Resumo:
Information Extraction is an important task in the legal domain. While the presence of structured and machine-processable data is scarce, unstructured data in the form of legal documents, such as legal opinions, is largely available. If properly processed, such documents can provide valuable information with regards to past lawsuits, allowing better assessment by legal professionals and supporting data-driven applications. This study addresses Information Extraction in the legal domain by extracting value from legal opinions related to consumer complaints. More specifically, the extraction of categorical provisions is addressed by classification, where six models based on different frameworks are analyzed. Moreover, the extraction of monetary values related to moral damage compensations is addressed by a Named Entity Recognition (NER) model. For evaluation, a dataset was constructed, containing 964 manually annotated legal opinions (written in Brazilian Portuguese) enacted by lower court judges. The results show an average of approximately 97 percent of accuracy when extracting categorical provisions, and 98.9 percent when applying NER for the extraction of moral damage compensations.
Descrição: Arquivo:   
COMPLETE PDF