Título: | INFORMATION EXTRACTION FROM LEGAL OPINIONS IN BRAZILIAN PORTUGUESE | ||||||||||||
Autor: |
GUSTAVO MARTINS CAMPOS COELHO |
||||||||||||
Colaborador(es): |
MARCO ANTONIO CASANOVA - Orientador |
||||||||||||
Catalogação: | 03/OUT/2022 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=60691&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=60691&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.60691 | ||||||||||||
Resumo: | |||||||||||||
Information Extraction is an important task in the legal domain. While
the presence of structured and machine-processable data is scarce, unstructured data in the form of legal documents, such as legal opinions, is largely
available. If properly processed, such documents can provide valuable information with regards to past lawsuits, allowing better assessment by legal professionals and supporting data-driven applications. This study addresses Information Extraction in the legal domain by extracting value from legal opinions
related to consumer complaints. More specifically, the extraction of categorical
provisions is addressed by classification, where six models based on different
frameworks are analyzed. Moreover, the extraction of monetary values related
to moral damage compensations is addressed by a Named Entity Recognition
(NER) model. For evaluation, a dataset was constructed, containing 964 manually annotated legal opinions (written in Brazilian Portuguese) enacted by
lower court judges. The results show an average of approximately 97 percent of accuracy when extracting categorical provisions, and 98.9 percent when applying NER
for the extraction of moral damage compensations.
|
|||||||||||||
|