Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: THERMODYNAMIC SIMULATION AND KINETIC MODELING OF THE DECOMPOSITION PROCESS OF SULFATES WITH DIFFERENT LEVELS OF THERMAL STABILITY IN THE PRESENCE OF CATALYSTS
Autor: NATHALLI MEORLLUW MELLO
Colaborador(es): RODRIGO FERNANDES MAGALHAES DE SOUZA - Orientador
FRANCISCO JOSE MOURA - Coorientador
Catalogação: 29/SET/2022 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=60676&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=60676&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.60676
Resumo:
The sulfur related thermochemical water-splitting cycles are an important class of chemical processes considered for hydrogen production. Recently, the magnesium and the ammonium sulfate thermal decomposition have been reported as a potential unit operation in one of these cycles. Therefore, some interest has been observed in the use of catalysts to lower the activation energy for sulfates that decompose in high temperatures, as such magnesium and the addition of a modifying agent to facilitate separation of the products in the case of sulfates that decompose into low temperatures as ammonium. In this context, the present thesis reports the thermodynamics and kinetics modeling results associated with this reactions systems in the presence of a Pd supported over gamma-Al(2)O(3). For Mg system the presence of such species is responsible for shifting the decomposition temperature to lower values in at least 100 degrees C. It was observed that the magnesium content is still oriented towards MgO formation. The obtained results indicate that the Pd/Al(2)O(3) catalyst could be a good alternative in reducing the thermal decomposition temperature as its presence was responsible for diminishing the process activation energy from 368.2 to 258.8 kJ.mol(-1). For NH(4) system it can be observed four steps for reactions and formation of aluminum sulfate, as the last sulfate bearing species, provided the separation of the sulfur oxide releasing it in a different step from the other gaseous products. The presence of palladium can act as an activation energy reducer, shifting the decomposition temperature to lower values in at least 90 degrees C and decreasing the activation energy by 12 – 30 percent than that found in the literature.
Descrição: Arquivo:   
COMPLETE PDF