Título: | ROBUST VISION-BASED AUTONOMOUS CROP ROW NAVIGATION FOR WHEELED MOBILE ROBOTS IN SLOPED AND ROUGH TERRAINS | ||||||||||||
Autor: |
GUSTAVO BERTAGNA PEIXOTO BARBOSA |
||||||||||||
Colaborador(es): |
EDUARDO COSTA DA SILVA - Orientador ANTONIO CANDEA LEITE - Coorientador |
||||||||||||
Catalogação: | 24/MAI/2022 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=59163&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=59163&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.59163 | ||||||||||||
Resumo: | |||||||||||||
In this work, we present a new application for some robust controllers,
such as SMC and STA approaches. The main idea is to perform autonomous
navigation in agricultural fields accurately using wheeled mobile robots,
equipped with a fixed monocular camera . Here, we consider the existence
of uncertainties in the parameters of the robot-camera system and external
disturbances caused by high driving velocities, sparse plants, and uneven
terrains. First, we design a robust image-based visual servoing approach to
deal with model inaccuracies and trajectory perturbations in the image
space. In addition, a cascade-based robust control approach is applied,
in which the outer vision feedback loop is connected with an inner pose
feedback loop to deal with the effects of all disturbances sources. Then, a
robust trajectory tracking approach based on the super-twisting algorithm
is applied for motion stabilization to ensure the successful execution of
row crop following tasks under wheel slippage and vehicle sideslip. ROSGazebo platform, an open-source robotics simulator, was used to perform
3D computer simulation using a differential-drive mobile robot and an adhoc designed row-crop environment. The effectiveness and feasibility of the
robust controllers are evaluated by analyzing numerical simulations and
performance metrics, such as: (i) the root-mean square error (RMSE) and
(ii) the mean-absolute deviation (MAD). Furthermore, we will see in results,
that in general, it is only possible to have stability, using robust controllers.
|
|||||||||||||
|