Título: | LABORATORY PERMEABILITY TESTS ON IPANEMA BEACH SAND AND ON A SAMPLE OF GLASS MICROSPHERES | ||||||||||||
Autor: |
BEATRIZ RODRIGUES SOARES |
||||||||||||
Colaborador(es): |
VITOR NASCIMENTO AGUIAR - Orientador IAN SCHUMANN MARQUES MARTINS - Coorientador |
||||||||||||
Catalogação: | 23/MAI/2022 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=59147&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=59147&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.59147 | ||||||||||||
Resumo: | |||||||||||||
The main objective of this research was to contribute to the evaluation of
the influence of the grain shape on the hydraulic conductivity (k) of sands. For that,
laboratory tests were carried out on a sample from Ipanema Beach sand (D10 =
0.28 mm, D30 = 0.34 mm, D50 = 0.41 mm, D60 = 0.45 mm, CNU = 1.61 e CC = 0.92),
composed by sub-rounded to rounded grains (sphericity = 0.65 and roundness =
0.70), and on a sample of glass microspheres, Drop-On II A type (sphericity = 0.95
and roundness = 0.95), prepared with the same grain size distribution of the sand.
The experimental program comprised: (a) cleaning and processing of the samples;
(b) microscopic analysis to evaluate the grain shape; (c) grain-size analysis by
sieving; (d) reconstitution of the grain-size distribution of the glass microspheres
sample; (e) glass microspheres specific gravity (Gs); (f) maximum void ratio tests,
by method B of ABNT (2020), and minimum and intermediate void ratio tests, by
MSP method of Miura and Toki (1982); and (g) constant head permeability tests in
rigid-wall permeameter and in flexible-wall permeameter. For both samples, it was
experimentally verified the validity of the linear relationship between the hydraulic
conductivity (k) and e (3)/(1+e), being e the void ratio, in agreement with the
theoretical formulations proposed by Kozeny-Carman (1927) and by Taylor (1948).
For a given void ratio, it was observed that the hydraulic conductivity of the glass
microsphere sample is higher than that of the sample from Ipanema Beach sand.
|
|||||||||||||
|