Título: | MODAL IDENTIFICATION OF DAMAGE IN STEEL FOOTBRIDGES USING ARTIFICIAL NEURAL NETWORK | ||||||||||||
Autor: |
VITOR ABRAHAO GONCALVES |
||||||||||||
Colaborador(es): |
ELISA DOMINGUEZ SOTELINO - Orientador CASSIO MARQUES RODRIGUES GASPAR - Coorientador |
||||||||||||
Catalogação: | 22/MAR/2022 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=58155&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=58155&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.58155 | ||||||||||||
Resumo: | |||||||||||||
Civil structures are subjected to different deterioration and corrosion actions
throughout their entire service life, which can generate variations in their physical
characteristics. These actions can cause damage to its functioning, and possibly
leading to collapse in more severe cases. In addition, technology development
which allows the design of increasingly slender structures, can produce excessive
vibrations, which elevates the importance ofstructural monitoring to a higher level
from the perspective of infrastructure managers. Particularly, in the case of
bridges and walkaways, due to their large dimensions make monitoring and
inspection even more difficult. Thus, with the aim of providing methods to assist
in structural monitoring and facilitate visual inspections, several damage
identification methods are investigated, which are based on structures dynamic
characteristics, such as natural frequencies and mode shapes. The conducted
literature review revealed that there is a difficulty in applying these identification
methods in large-scale and complex structures. Thus, this research aims to study
these barriers and propose a solution based on the development of a new damage
index based on the structure s mode shapes. Furthermore, through the application
of machine learning algorithms and pattern recognition, such as Artificial Neural
Networks (ANN), it is proposed to increase the efficiency of the damage
identification and quantification process. Then, the proposed methodology is
tested numerically on a steel footbridge model inspired by a real structure located
in the region of the Olympic Center Terminal, in the city of Rio de Janeiro – RJ.
The damage identification method is studied through the application of the
proposed damage index, incorporating the neural network and assessing the
impact of ANNs parameters variation in the global efficiency of the damage
detection method.
|
|||||||||||||
|