Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: MODAL IDENTIFICATION OF DAMAGE IN STEEL FOOTBRIDGES USING ARTIFICIAL NEURAL NETWORK
Autor: VITOR ABRAHAO GONCALVES
Colaborador(es): ELISA DOMINGUEZ SOTELINO - Orientador
CASSIO MARQUES RODRIGUES GASPAR - Coorientador
Catalogação: 22/MAR/2022 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=58155&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=58155&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.58155
Resumo:
Civil structures are subjected to different deterioration and corrosion actions throughout their entire service life, which can generate variations in their physical characteristics. These actions can cause damage to its functioning, and possibly leading to collapse in more severe cases. In addition, technology development which allows the design of increasingly slender structures, can produce excessive vibrations, which elevates the importance ofstructural monitoring to a higher level from the perspective of infrastructure managers. Particularly, in the case of bridges and walkaways, due to their large dimensions make monitoring and inspection even more difficult. Thus, with the aim of providing methods to assist in structural monitoring and facilitate visual inspections, several damage identification methods are investigated, which are based on structures dynamic characteristics, such as natural frequencies and mode shapes. The conducted literature review revealed that there is a difficulty in applying these identification methods in large-scale and complex structures. Thus, this research aims to study these barriers and propose a solution based on the development of a new damage index based on the structure s mode shapes. Furthermore, through the application of machine learning algorithms and pattern recognition, such as Artificial Neural Networks (ANN), it is proposed to increase the efficiency of the damage identification and quantification process. Then, the proposed methodology is tested numerically on a steel footbridge model inspired by a real structure located in the region of the Olympic Center Terminal, in the city of Rio de Janeiro – RJ. The damage identification method is studied through the application of the proposed damage index, incorporating the neural network and assessing the impact of ANNs parameters variation in the global efficiency of the damage detection method.
Descrição: Arquivo:   
COMPLETE PDF