Título: | INTERFACIAL RHEOLOGY AND PROPERTIES OF ISLAND-TYPE ASPHALTENES | ||||||||||||
Autor: |
ISABELA FERNANDES SOARES |
||||||||||||
Colaborador(es): |
MONICA FEIJO NACCACHE - Orientador ELIANA PAOLA MARIN CASTANO - Coorientador |
||||||||||||
Catalogação: | 07/MAR/2022 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=57587&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=57587&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.57587 | ||||||||||||
Resumo: | |||||||||||||
Adsorption of asphaltene molecules at the oil-water interface induces
the formation of a complex microstructure, which stabilizes emulsions and
impairs the efficiency of crude oil refining. In this work, we design a set
of new shear rheology protocols to assess the effect of polar and non-polar
solvents on indigenous Brazilian (BR) asphaltene adsorption. Moreover, the
asphaltene morphology upon addition of solvents with distinct aromaticities
is investigated by SEM microscopy. Our findings indicate that asphaltenes
are a polycondensate aromatic island-type structure that forms reversible
films when polar solvents are placed on top of the adsorbed film. The
interfacial study also reveals that non-polar solvents may lock up asphaltene
nanoaggregates in mixture. These aggregates, upon the presence of weakly
polar solvents, can consolidate into a more close-packed pattern, suggesting
that network growth and asphaltene self-arrangement are directly related to
the aromatic content. We explore the differences in asphaltene structuring and how it affects the extent of spontaneous emulsification. We find that
the rate of emulsification is directly related to the chemical configuration
of asphaltenes. Finally, we study the addition of stearic acid (SA) to
asphaltene solutions in deionized water (DW) and synthetic water (SW)
to better understand how surface and rheological properties are affected
by competitive adsorption. We find that single SA are more prone to
form liquid-like rather than solid-like films at the air-water interface.
Furthermore, we show that the interfacial activity of our asphaltenes is
enhanced in the presence of electrolytes and is dependent of the solvent
aromaticity.
|
|||||||||||||
|