Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DEVELOPMENT OF ULTRA PRECISE PIV FOR LOW GRADIENTS USING HYBRID CROSS-CORRELATION AND CASCADING NEURAL NETWORK CONVOLUTIONAL APPROACH
Autor: CARLOS EDUARDO RODRIGUES CORREIA
Colaborador(es): CARLOS ROBERTO HALL BARBOSA - Orientador
IGOR BRAGA DE PAULA - Coorientador
HELON VICENTE HULTMANN AYALA - Coorientador
Catalogação: 31/JAN/2022 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=57217&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=57217&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.57217
Resumo:
Throughout history, fluid engineering is one of the most important areas of engineering due to its impact in the areas of transportation, energy and the military. The measurement of velocity fields is important for studies in aerodynamics and hydrodynamics. The techniques for measuring the velocity field are mostly optical techniques, with emphasis on the PIV technique. On the other hand, in recent years, important advances in computer vision, based on convolutional neural networks, have shown promise for improving the processing of optical techniques. In this work, a hybrid approach between cross-correlation and cascade of convolutional neural networks was used to develop a new PIV technique. The project was based on the latest work of PIV with an artificial neural network to develop the architecture of the networks and their form of training. Several cascade formats of neural networks were tested until they reached a format that allowed the error to be reduced by an order of magnitude for uniform flow. In addition to the development of the cascade for uniform flow, knowledge was generated to make cascades for other types of flows.
Descrição: Arquivo:   
COMPLETE PDF