Título: | DEVELOPMENT OF ULTRA PRECISE PIV FOR LOW GRADIENTS USING HYBRID CROSS-CORRELATION AND CASCADING NEURAL NETWORK CONVOLUTIONAL APPROACH | ||||||||||||
Autor: |
CARLOS EDUARDO RODRIGUES CORREIA |
||||||||||||
Colaborador(es): |
CARLOS ROBERTO HALL BARBOSA - Orientador IGOR BRAGA DE PAULA - Coorientador HELON VICENTE HULTMANN AYALA - Coorientador |
||||||||||||
Catalogação: | 31/JAN/2022 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=57217&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=57217&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.57217 | ||||||||||||
Resumo: | |||||||||||||
Throughout history, fluid engineering is one of the most important areas of engineering
due to its impact in the areas of transportation, energy and the military. The measurement of
velocity fields is important for studies in aerodynamics and hydrodynamics. The techniques for
measuring the velocity field are mostly optical techniques, with emphasis on the PIV technique.
On the other hand, in recent years, important advances in computer vision, based on
convolutional neural networks, have shown promise for improving the processing of optical
techniques. In this work, a hybrid approach between cross-correlation and cascade of
convolutional neural networks was used to develop a new PIV technique. The project was based
on the latest work of PIV with an artificial neural network to develop the architecture of the
networks and their form of training. Several cascade formats of neural networks were tested
until they reached a format that allowed the error to be reduced by an order of magnitude for
uniform flow. In addition to the development of the cascade for uniform flow, knowledge was
generated to make cascades for other types of flows.
|
|||||||||||||
|