Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SYNTHESIS AND CHARACTERIZATION OF COPPER-NIQUEL ALLOYS CONTAINING ALUMINA NANOPARTICLES
Autor: MARIA ISABEL RAMOS NAVARRO
Colaborador(es): EDUARDO DE ALBUQUERQUE BROCCHI - Orientador
ROGERIO NAVARRO CORREIA DE SIQUEIRA - Coorientador
Catalogação: 14/DEZ/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56567&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56567&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.56567
Resumo:
Materials containing nanostructured particles have been studied over the last decades in order to take advantage of their promising thermal, mechanical and catalytic properties. Some recent progress has shown that these properties can be further enhanced by the inclusion of materials with different properties in their structure, thereby forming nanocomposites. For instance, Ni-Cu alloys are highly ductile, but the presence of Al2O3 nanoparticles deposited inside the alloy matrix can considerably improve the material s hardness. Such a nanocomposite can be obtained, for example, through nitrate solutions thermal decomposition followed by selective reduction with hydrogen. In this context, the present work focuses on the synthesis of CuNi alloys and CuNi/Al2O3 composites based on the selective reduction of copper and nickel oxides with pure H2, co-formed with aluminum oxide through thermal decomposition of aqueous solutions of their metal nitrates. Thermodynamic computations showed that the Cu and Ni reduction can be accomplished at relatively low temperatures (400 plus or minus 5 C degrees), and also that the process develops selectively (only the oxides of Ni and Cu react at the imposed conditions), resulting in Cu-Ni-Al2O3 composites, consisting in a Cu-Ni alloy crystals containing 1 percent of Al2O3 as fine homogeneously distributed nanoparticles. Both the original (co-formed) and reduced oxide samples were characterized using x ray diffraction (XRD) for determining the nature of the individual phases present (oxides and alloys) and scanning electron microscopy (SEM) as a first approach to the investigation of the morphology of the particles. The results indicate that the proposed chemical route resulted in composite materials containing CuNi alloy and Al2O3 particles of controllable composition and homogeneously distributed among the samples. The achieved results also suggest that for the imposed experimental conditions both the nitrate decomposition as well as the reduction reactions could be conducted to 100 percent conversion.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
REFERENCES AND APPENDICES PDF