Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: LIMITED TIME MACHINE TEACHING FOR REGRESSION PROBLEMS
Autor: PEDRO LAZERA CARDOSO
Colaborador(es): EDUARDO SANY LABER - Orientador
Catalogação: 02/DEZ/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56352&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56352&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.56352
Resumo:
This work considers the Time-Limited Regression problem. Given a dataset, a learning algorithm (Learner) to be trained and a limited time, we do not know if it s going to be possible to train the model with the entire dataset within this time constraint. We then want to elaborate the strategy that extracts the best possible model from this learning algorithm respecting the time limit. A strategy consists of a series of interactions with the Learner, in two possible ways: sending labeled examples for the Learner to train and sending unlabeled examples for the Learner to classify. We define what the Time-Limited Regression problem is, we decompose the problem of elaborating a strategy into simpler and more well-defined sub-problems, we elaborate a natural strategy based on random choice of examples and finally we present a strategy, TW+BH, that performs better than the natural strategy in experiments we have done with several real datasets.
Descrição: Arquivo:   
COMPLETE PDF