Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SYSTEMS FOR PROVABILITY AND COUNTERMODEL GENERATION IN PROPOSITIONAL MINIMAL IMPLICATIONAL LOGIC
Autor: JEFFERSON DE BARROS SANTOS
Colaborador(es): EDWARD HERMANN HAEUSLER - Orientador
GILLES DOWEK - Coorientador
Catalogação: 23/NOV/2021 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56122&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56122&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.56122
Resumo:
This thesis presents a new sequent calculus called LMT→ that has the properties to be terminating, sound and complete for Propositional Implicational Minimal Logic (M →). LMT→ is aimed to be used for proof search in M →, in a bottom-up approach. Termination of the calculus is guaranteed by a strategy of rule application that forces an ordered way to search for proofs such that all possible combinations are stressed. For an initial formula α, proofs in LMT→ has an upper bound of |α|.2 |α|+1+2·log2|α|, which together with the system strategy ensure decidability. System rules are conceived to deal with the necessity of hypothesis repetition and the contextsplitting nature of → left, avoiding the occurrence of loops and the usage of backtracking. Therefore, LMT→ steers the proof search always in a forward, deterministic manner. LMT→ has the property to allow extractability of counter-models from failed proof searches (bicompleteness), i.e., the attempt proof tree of an expanded branch produces a Kripke model that falsifies the initial formula. Counter-model generation (using Kripke semantics) is achieved as a consequence of the completeness of the system. LMT→ is implemented as an interactive theorem prover based on the calculus proposed here. We compare our calculus with other known deductive systems for M →, especially with Fitting s Tableaux, a method that also has the bicompleteness property. We also proposed here a translation of LMT→ to the Dedukti proof checker as a way to evaluate the correctness of the implementation regarding the system specification and to make our system easier to compare to others.
Descrição: Arquivo:   
COMPLETE PDF