Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DEVELOPMENT AND CHARACTERIZATION OF OLEDS BASED ON FLUORESCENT PROBES
Autor: RIAN ESTEVES ADERNE
Colaborador(es): MARCO CREMONA - Orientador
Catalogação: 10/NOV/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55795&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55795&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.55795
Resumo:
In this study the optical, electrochemical, electrical and morphological properties of new fluorescent compounds were studied in order to develop OLEDs based upon these materials. For this purpose some fluorescent molecular probes used in the biomedical field as antitumor agents and fluorescent optical probes were studied: a) N,N diisonicotinoyl-2-hydroxy-5-methylisophthalaldehyde dihydrazone (DMD ), b) 2 - (5 -isothiocyanato -2-hydroxyphenyl) benzoxazole ( 5ONCS ), c) 1,1 - dipyrene (DIPI) and d) 7,7 -tertbutyl- 1,1-dipyrene (TDIPI ). All these compounds were synthesized by Brazilian research groups and then thermally deposited as thin films in our Laboratory. During the study for the fabrication of OLEDs, bilayer devices based on DMD and 5ONCS proved to have low efficiency mainly due to the low conductivity of the DMD and the high roughness of the 5ONCS layer. The solution of these problems was found in the codeposition technique, which consists in the simultaneous evaporation of an organic matrix (host) and a dopant (guest) (5ONCS or DMD) in a single layer. Thus, it was possible to achieve an increase in the charge mobility in the co-deposited layers as well as energy transfer from the guest to the host. The OLEDs fabricated in these conditions allowed the observation, for the first time, of the electroluminescence of DMD and 5ONCS. On the other hand, the DIPI and TDIPI based OLEDs presented good electroluminescence without the need for co-deposition. In particular, in the case of the TDIPI it was possible to achieve a luminance of 1430 cd/m2 with an efficiency of 2.65 percent at 1 mA. The results of this work showed the potential of these materials for the fabrication of OLEDs for lighting applications.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
REFERENCES PDF