Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: MICRO-STRUCTURED OPTICAL FIBERS SENSORS
Autor: FERNANDO CRISTIANO FAVERO
Colaborador(es): ISABEL CRISTINA DOS SANTOS CARVALHO - Orientador
Catalogação: 09/NOV/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55761&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55761&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.55761
Resumo:
In this work, we have demonstrated the use of Photonic Crystal Fiber (PCF), in different configurations, for sensing applications. The high birefringence and low temperature dependence characteristics of the PCF were explored for sensing hydrostatic pressure and deformation in a reflection configuration. Sensing was based on the analysis of the interference patterns between the modes that propagate in the birefringent fiber under the variation of pressure and deformation applied to the fiber. We have also demonstrated a technique to manufacture a Fabry-Perot Interferometer (FPI) cavity within an optical fiber with control of the cavity length and thus the control of the period of the fringes in the interference pattern. The Fabry-Perot Interferometer investigated presented a very high fringe contrast, above 30 dB, and showed a record value of the contrast of the fringes for FPI silica-air. The FPI device integrated within the fiber was tested as a strain sensor and also as a device to monitor vibration. A study of the relative sensitivity of the length of the FPI was also investigated. Another interferometer was built from a piece of standard fiber and a PCF with two regions of collapsed microstructures. These regions allowed the excitation and recombination of the fiber modes. This device was tested as a refractive index sensor, presenting a fringe contrast above 40 dB. An application of this device was the development of a humid sensor to monitor human breathing.
Descrição: Arquivo:   
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS PDF    
CHAPTER 1 PDF    
CHAPTER 2 PDF    
CHAPTER 3 PDF    
CHAPTER 4 PDF    
CHAPTER 5 PDF    
CHAPTER 6 PDF    
CHAPTER 7 PDF    
REFERENCES PDF