Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: FLOW MODELLING IN FRACTURE NETWORKS THROUGH EXPLICIT AND IMPLICIT REPRESENTATION
Autor: ISMAEL RIBEIRO VASCONCELOS NETO
Colaborador(es): DEANE DE MESQUITA ROEHL - Orientador
ELEAZAR CRISTIAN MEJIA SANCHEZ - Coorientador
Catalogação: 27/SET/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55041&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55041&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.55041
Resumo:
Fractured porous media are present in different types of geological formations as rock masses and oil and gas reservoirs. The proper modelling of the fractured systems present in these media is of high relevance to the development of production and exploitation strategies of these formations. This is because the fluid flow processes are strongly influenced by the fractured systems characteristics. In this context, several approaches have been developed to model these problems using explicit and implicit representations to fractures. The explicit representation using discrete fracture models provides accurate results, but has a high computational cost and exhibits difficulties to construct more complex models. On the other hand, implicit representation models, as the dual porosity/dual permeability, are very attractive because they incorporate the effect of fractures to simulations without the need to represent them explicitly in the models. However, these models are suitable to problems with small and connected fractures, and have limited capability to represent major fractures of larger scale that can dominate the flow. Therefore, this work shows some of the available approaches to represent fractured porous formations. Moreover, a new formulation was proposed to represent the effect of isolated fractures, which proved to be efficient in models with considerable number of fractures.
Descrição: Arquivo:   
COMPLETE PDF