Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ON THE MISSING DISINFLATION PUZZLE: A DATA-DRIVEN APPROACH
Autor: RAPHAEL DE AQUINO LUDWIG PEREIRA
Colaborador(es): EDUARDO ZILBERMAN - Orientador
MARCELO CUNHA MEDEIROS - Coorientador
Catalogação: 23/SET/2021 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=54981&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=54981&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.54981
Resumo:
This paper examines the potential explanations for the Missing Disinflation Puzzle (MDP). We construct a data set containing only variables associated with the puzzle, and use of Machine Learning (ML) methods to compute estimates for U.S. Consumer Price Index inflation over the period of interest. These methods can handle large data sets, and perform variable selection. A model selection exercise using Model Confidence Set over pseudo-out-of-sample forecasts is proposed to assess forecasting performance and to analyze the variable selection pattern of these models. We analyze the variable selection performed by the best models and find evidence for explanations associated with different metrics for inflation expectations - in particular those linked to consumers surveys.
Descrição: Arquivo:   
COMPLETE PDF