Título: | A METHOD FOR INTERPRETING CONCEPT DRIFTS IN A STREAMING ENVIRONMENT | ||||||||||||
Autor: |
JOAO GUILHERME MATTOS DE O SANTOS |
||||||||||||
Colaborador(es): |
HELIO CORTES VIEIRA LOPES - Orientador THUENER ARMANDO DA SILVA - Coorientador |
||||||||||||
Catalogação: | 10/AGO/2021 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=54157&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=54157&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.54157 | ||||||||||||
Resumo: | |||||||||||||
In a dynamic environment, models tend to perform poorly once the
underlying distribution shifts. This phenomenon is known as Concept Drift.
In the last decade, considerable research effort has been directed towards
developing methods capable of detecting such phenomena early enough so
that models can adapt. However, not so much consideration is given to
explain the drift, and such information can completely change the handling
and understanding of the underlying cause. This dissertation presents a novel
approach, called Interpretable Drift Detector, that goes beyond identifying
drifts in data. It harnesses decision trees’ structure to provide a thorough
understanding of a drift, i.e., its principal causes, the affected regions of a tree model, and its severity. Moreover, besides all information it provides, our
method also outperforms benchmark drift detection methods in terms of falsepositive rates and true-positive rates across several different datasets available in the literature.
|
|||||||||||||
|