Título: | CONSERVATIVE-SOLUTION METHODOLOGIES FOR STOCHASTIC PROGRAMMING: A DISTRIBUTIONALLY ROBUST OPTIMIZATION APPROACH | ||||||||||||
Autor: |
CARLOS ANDRES GAMBOA RODRIGUEZ |
||||||||||||
Colaborador(es): |
DAVI MICHEL VALLADAO - Orientador ALEXANDRE STREET DE AGUIAR - Coorientador |
||||||||||||
Catalogação: | 20/JUL/2021 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53796&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53796&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.53796 | ||||||||||||
Resumo: | |||||||||||||
Two-stage stochastic programming is a mathematical framework
widely used in real-life applications such as power system operation
planning, supply chains, logistics, inventory management, and financial
planning. Since most of these problems cannot be solved analytically,
decision-makers make use of numerical methods to obtain a near-optimal
solution. Some applications rely on the implementation of non-converged
and therefore sub-optimal solutions because of computational time or
power limitations. In this context, the existing methods provide an optimistic
solution whenever convergence is not attained. Optimistic solutions
often generate high disappointment levels because they consistently
underestimate the actual costs in the approximate objective function.
To address this issue, we have developed two conservative-solution
methodologies for two-stage stochastic linear programming problems
with right-hand-side uncertainty and rectangular support: When the actual
data-generating probability distribution is known, we propose a DRO
problem based on partition-adapted conditional expectations whose complexity
grows exponentially with the uncertainty dimensionality; When
only historical observations of the uncertainty are available, we propose
a DRO problem based on the Wasserstein metric to incorporate ambiguity
over the actual data-generating probability distribution. For this
latter approach, existing methods rely on dual vertex enumeration of the
second-stage problem rendering the DRO problem intractable in practical
applications. In this context, we propose algorithmic schemes to address
the computational complexity of both approaches. Computational experiments
are presented for the farmer problem, aircraft allocation problem,
and the stochastic unit commitment problem.
|
|||||||||||||
|