Título: | DEVELOPMENT AND APPLICATIONS OF A COMPOSITIONAL PORE-NETWORK MODEL FOR GAS-CONDENSATE FLOW | ||||||||||||
Autor: |
PAULA KOZLOWSKI PITOMBEIRA REIS |
||||||||||||
Colaborador(es): |
MARCIO DA SILVEIRA CARVALHO - Orientador |
||||||||||||
Catalogação: | 19/JUL/2021 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53755&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53755&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.53755 | ||||||||||||
Resumo: | |||||||||||||
Liquid dropout and accumulation in gas-condensate reservoirs, especially
in the near wellbore region, hinder gas flow and affect negatively the produced
fluid composition. Yet, condensate banking forecasting is commonly inaccurate,
as experiments seldom reproduce reservoir extreme conditions and complex
fluid composition, while most pore-scale models oversimplify the physical
phenomena associated with phase transitions between gas and condensate. To
address this gap, a fully implicit isothermal compositional pore-network model
for gas and condensate flow is presented. The proposed pore-networks consist
of 3D structures of constricted circular capillaries. Condensation modes and
flow patterns are attributed to the capillaries according to the medium s wettability,
local saturations and influence of viscous and capillary forces. At the
network nodes, pressure and molar contents are determined via the coupled
solution of molar balance and volume consistency equations. Concomitantly, a
PT-flash based on the Peng-Robinson equation of state is performed for each
node, updating the local phases saturations and compositions. For the proposed
model validation, flow analyses were carried out based on coreflooding
experiments reported in the literature, with matching fluid composition and
flow conditions, and approximated pore-space geometry. Predicted and measured
relative permeability curves showed good quantitative agreement, for two
values of interfacial tension and three values of gas flow velocity. Following
the validation, the model was used to evaluate wettability alteration and gas
injection as prospect enhanced recovery methods for gas-condensate reservoirs.
Results exhibited similar trends observed in coreflooding experiments and conditions
for optimal flow enhancement were identified.
|
|||||||||||||
|