Título: | AN INTRODUCTION TO ELLIPTIC CURVES OVER FINITE FIELDS | ||||||||||||
Autor: |
EDUARDO VIEIRA DE OLIVEIRA AGUIAR |
||||||||||||
Colaborador(es): |
NICOLAU CORCAO SALDANHA - Orientador |
||||||||||||
Catalogação: | 14/JUL/2021 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53709&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53709&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.53709 | ||||||||||||
Resumo: | |||||||||||||
Elliptic curves have been studied by mathematicians for over 200 years. By itself, it is a remarkably interesting theory as it is related to several areas of mathematics: algebra, Diophantine equations and algebraic geometry, among others. Recently, several researchers have suggested the use of elliptic curves to solve practical problems; as examples, we can mention cryptography, integer factorization algorithms and primality tests. An elliptic curve is defined over a field (in algebraic sense). This dissertation aims to present the first elements in the theory of elliptic curves on finite fields. As we will see, the development of the subject addresses a number of topics covered in basic education. In order to accomplish this, we will start the work with an introduction using the field of real numbers and then we will include the more general theory about these algebraic curves. Finally, we will present some properties and results on elliptic curves over finite fields, including some examples and a geometric interpretation of the sum of two points over specific finite fields.
|
|||||||||||||
|