Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SEMANTIC GRAPH ATTENTION NETWORKS AND TENSOR DECOMPOSITIONS FOR COMPUTER VISION AND COMPUTER GRAPHICS
Autor: LUIZ JOSE SCHIRMER SILVA
Colaborador(es): HELIO CORTES VIEIRA LOPES - Orientador
LUIZ CARLOS PACHECO RODRIGUES VELHO - Coorientador
Catalogação: 02/JUL/2021 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53529&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53529&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.53529
Resumo:
This thesis proposes new architectures for deep neural networks with attention enhancement and multilinear algebra methods to increase their performance. We also explore graph convolutions and their particularities. We focus here on the problems related to real-time pose estimation. Pose estimation is a challenging problem in computer vision with many real applications in areas including augmented reality, virtual reality, computer animation, and 3D scene reconstruction. Usually, the problem to be addressed involves estimating the 2D and 3D human pose, i.e., the anatomical keypoints or body parts of persons in images or videos. Several papers propose approaches to achieve high accuracy using architectures based on conventional convolution neural networks; however, mistakes caused by occlusion and motion blur are not uncommon, and those models are computationally very intensive for real-time applications. We explore different architectures to improve processing time, and, as a result, we propose two novel neural network models for 2D and 3D pose estimation. We also introduce a new architecture for Graph attention networks called Semantic Graph Attention.
Descrição: Arquivo:   
COMPLETE PDF