Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: COMBINATORIAL GAMES AND THE NEIGHBORHOOD CONJECTURE
Autor: HANDEL SCHOLZE MARQUES
Colaborador(es): SIMON RICHARD GRIFFITHS - Orientador
Catalogação: 22/JUN/2021 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53376&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53376&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.53376
Resumo:
The theory of Combinatorial Games is the study of games with perfect information. This means that all players have knowledge of all possible moves, also there isn t luck or skill to perform a move, so, in theory perfect play is possible. Examples of games like these are tic-tac-toe, chess, checkers, Nim... the list goes on. In this dissertation we focus on the Maker-Breaker game. It has two players that pick a vertex from a hypergraph. The goal of Maker is to claim all vertices of an edge and the goal of Breaker is to prevent it. To understand in which types of hypergraphs does Maker or Breaker win and what are the winning strategies, we make use of SAT, Probability, general Graph Theory and more.
Descrição: Arquivo:   
COMPLETE PDF