Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: HOLDER CONTINUITY FOR LYAPUNOV EXPONENTS OF RANDOM LINEAR COCYCLES
Autor: MARCELO DURAES CAPELEIRO PINTO
Colaborador(es): SILVIUS KLEIN - Orientador
Catalogação: 27/MAI/2021 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=52950&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=52950&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.52950
Resumo:
A compactly supported probability measure on a group of matrices determines a sequence of i.i.d. random matrices. Consider the corresponding multiplicative process and its geometric averages. Furstenberg-Kesten s theorem, the analogue of the law of large numbers in this setting, ensures that the geometric averages of this multiplicative process converge almost surely to a constant, called the maximal Lyapunov exponent of the given measure. This concept can be reformulated in the more general context of ergodic theory using random linear cocycles over the Bernoulli shift. A natural question concerns the regularity properties of the Lyapunov exponent as a function of the data. Under an irreducibility condition and in a specific setting (which was later generalized by various authors) Le Page established the Holder continuity of the Lyapunov exponent. Recently, Baraviera and Duarte obtained a direct and elegant proof of this type of result. Their argument uses Furstenberg s formula and the regularity properties of the stationary measure. Following their approach, in this work we obtain a new result showing that under the same irreducibility hypothesis, the Lyapunov exponent depends Holder continuously on the measure, relative to the Wasserstein metric, thus generalizing the result of Baraviera and Duarte.
Descrição: Arquivo:   
COMPLETE PDF