Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: VARIABLE STEP-SIZE EVOLVING PARTICIPATORY LEARNING WITH KERNEL RECURSIVE LEAST SQUARES MODEL APPLIED TO GAS PRICES FORECASTING IN BRAZIL
Autor: EDUARDO RAVAGLIA CAMPOS QUEIROZ
Colaborador(es): FERNANDO LUIZ CYRINO OLIVEIRA - Orientador
EDUARDO PESTANA DE AGUIAR - Coorientador
Catalogação: 30/ABR/2021 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=52507&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=52507&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.52507
Resumo:
A prediction model is an indispensable tool in business, helping to make decisions, whether in the short, medium, or long term. In this context, the implementation of machine learning techniques in time series forecasting models has a notorious relevance, as information processing and efficient and dynamic knowledge uncovering are increasingly demanded. This work develops a model called Variable Step-Size evolving Participatory Learning with Kernel Recursive Least Squares, VS-ePL-KRLS, applied to the forecast of weekly prices for S500 and S10 diesel oil, at the Brazilian level, for biweekly and monthly horizons. The presented model demonstrates a better accuracy compared with analogous models in the literature, without loss of computational performance for all time series analyzed.
Descrição: Arquivo:   
COMPLETE PDF