Título: | FLOW OF A CAPSULE SUSPENDED IN A NEWTONIAN LIQUID THROUGH A CONSTRICTED CHANNEL AND CAPILLARY | ||||||||||||
Autor: |
JOSE FRANCISCO ROCA REYES |
||||||||||||
Colaborador(es): |
MARCIO DA SILVEIRA CARVALHO - Orientador IVAN FABIO MOTA DE MENEZES - Coorientador |
||||||||||||
Catalogação: | 20/ABR/2021 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=52296&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=52296&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.52296 | ||||||||||||
Resumo: | |||||||||||||
The flow of capsules suspended in a liquid phase through small channels
and capillaries poses a complex problem presented in different applications,
from red blood cells on hemodynamics to flow in porous media. In applications
of porous media, the understanding of microscale dynamics is fundamental
to assess the macroscopic flow behavior. Constricted channels and capillaries
can be used to model a pore throat connecting two adjacent pore bodies. The
flow of a suspended capsule through such models was analyzed to evaluate the
flow characteristics considering inertial effects (i.e. finite Reynolds numbers),
including the maximum pressure difference required to push a capsule through
the constriction as a function of capsule radius, initial membrane tension, membrane
material, channel and capillary geometries, as well as flow conditions. In
fact, in this study, the pressure response is fundamental in order to assess the
capsule blocking mechanism. Inner and outer liquid phases were described by
the Navier-Stokes equations and capsule membrane dynamics was modeled by
a 1-D spring-like flexible structure. The fluid-structure interaction problem was
solved using the finite element method coupled with the immersed boundary
method. Results showed the mobility reduction of the continuous phase due
to the presence of a capsule as it flows through the constriction. Such results
can be used to design microcapsules to block preferential water flow paths in
oil displacement process in porous media.
|
|||||||||||||
|