Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: GRAPH OPTIMIZATION AND PROBABILISTIC SLAM OF MOBILE ROBOTS USING AN RGB-D SENSOR
Autor: JOAO CARLOS VIRGOLINO SOARES
Colaborador(es): MARCO ANTONIO MEGGIOLARO - Orientador
Catalogação: 23/MAR/2021 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51950&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51950&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.51950
Resumo:
Mobile robots have a wide range of applications, including autonomous vehicles, industrial robots and unmanned aerial vehicles. Autonomous mobile navigation is a challenging subject due to the high uncertainty and nonlinearity inherent to unstructured environments, robot motion and sensor measurements. To perform autonomous navigation, a robot need a map of the environment and an estimation of its own pose with respect to the global coordinate system. However, usually the robot has no prior knowledge about the environment, and has to create a map using sensor information and localize itself at the same time, a problem called Simultaneous Localization and Mapping (SLAM). The SLAM formulations use probabilistic algorithms to handle the uncertainties of the problem, and the graph-based approach is one of the state-of-the-art solutions for SLAM. For many years, the LRF (laser range finders) were the most popular sensor choice for SLAM. However, RGB-D sensors are an interesting alternative, due to their low cost. This work presents an RGB-D SLAM implementation with a graph-based probabilistic approach. The proposed methodology uses the Robot Operating System (ROS) as middleware. The implementation is tested in a low cost robot and with real-world datasets from literature. Also, it is presented the implementation of a pose-graph optimization tool for MATLAB.
Descrição: Arquivo:   
COMPLETE PDF