Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SURROGATE MODEL FOR UNSATURATED FLOW THROUGH EVOLUTIONARY POLYNOMIAL REGRESSION: CALIBRATION WITH THE MONITORED INFILTRATION TEST
Autor: RUAN GONCALVES DE SOUZA GOMES
Colaborador(es): EURIPEDES DO AMARAL VARGAS JUNIOR - Orientador
GUILHERME JOSE CUNHA GOMES - Coorientador
Catalogação: 26/FEV/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51604&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51604&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.51604
Resumo:
Water flow analyses under transient soil hydraulic conditions require knowledge of the soil hydraulic properties. These constitutive relationships, named soil-water characteristic curve (SWCC) and hydraulic conductivity function (HCF) are described through empirical models which generally have several parameters that must be calibrated against collected data. Many of the parameters in SWCC and HCF models cannot be directly measured in field or laboratory but can only be meaningfully inferred from collected data and inverse modeling. In order to obtain the soil parameters with the inverse process, a local or global optimization algorithm may be applied. Global optimizations are more capable of fiding optimum parameters, however the direct solution through numerical modeling are time consuming. Therefore, analytical solutions (surrogate models) may overcome this shortcomming by accelerating the optimization process. In this work we introduce Evolutionary Polynomial Regression (EPR) as a tool to develop surrogate models of the physically-based unsaturated flow. A rich dataset of soil hydraulic parameters is used to calibrate our surrogate model, and real-world data are then utilized to validate our methodology. Our results demonstrate that the EPR model predicts accurately the observed pressure head data. The model simulations are shown to be in good agreement with the Hydrus software package.
Descrição: Arquivo:   
COMPLETE PDF