Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: COREFERENCE RESOLUTION USING LATENT TREES WITH CONTEXTUAL EMBEDDING
Autor: LEONARDO BARBOSA DE OLIVEIRA
Colaborador(es): SERGIO COLCHER - Orientador
Catalogação: 19/JAN/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51292&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51292&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.51292
Resumo:
The coreference resolution task consists of to identify and group spans of text related to the same real-world entity. Although it has been approached in other conferences, the 2012 CoNLL is a milestone due to the improvement in the quality of its dataset, metrics, and the presented solutions. In that edition, the winning model used a structured perceptron to optimize an antecedent latent tree, achieving 63.4 on the official metric for the English test dataset. During the following years, the metrics and dataset presented in that conference became the benchmark for the coreference task. With new machine learning techniques, more elaborated solutions were presented. The use of shallow neural networks achieved 68.8; adding contextual representation raised the state-of-the-art to 73.0; deep neural networks improved the baseline to 76.9 and the current state-of-the-art, which is a combination of many of these techniques, is at 79.6. This work presents an analysis of how the word embedding mechanisms Bag of Words, GloVe, BERT and SpanBERT, used with antecedent latent trees, are compared to the original model of 2012. The best model found used SpanBERT with a very large margin, achieving 61.3 in the CoNLL 2012 metric using the test dataset. With these results, we show that it is possible to use advanced techniques in simpler structures and still achieve competitive results in the coreference task. Besides that, we improved the performance of an open source framework for coreference, so it can manage solution that demand more memory and processing.
Descrição: Arquivo:   
COMPLETE PDF