Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: KINETIC MODELLING OF CUO AND TA2O5 CHLORINATION WITH TETRACHLOROETHYLENE
Autor: EDUARDO TEIXEIRA DE VASCONCELLOS
Colaborador(es): ROGERIO NAVARRO CORREIA DE SIQUEIRA - Orientador
Catalogação: 04/JAN/2021 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51095&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51095&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.51095
Resumo:
Chloride roasting is a process widely used in the field of extractive metallurgy, especially with regard to obtaining metals. Studies show that from a gaseous chlorinating agent and the incorporation of a reducing agent in the system, both the kinetics and the thermodynamics of the reactions are stimulated. In this context, organochlorine compounds, such as CCl4 and C2Cl4, stand out as promising candidates for the replacement of Cl2. The present study performs a thermodynamic evaluation of the processes from speciation diagrams for equilibrium, as well as the modeling of kinetic data associated with the chlorination of copper oxide (CuO - 923 K to 1173 K) and tantalum pentoxide (Ta2O5 - 1073 K to 1223 K), in an atmosphere of C2Cl4 diluted in N2, using equations already consolidated in the context of gas-solid reaction modeling (shrinking core, auto-catalytic and Avrami). The models of the shrinking core with diffusional control by the ash layer and chemical control, were the two that presented better quality adjustments. The diffusional model showed global activation energy for the CuO of 71.5592 plus-minus 10 kJ.mol (-1) and 62.2606 plus-minus 10 kJ.mol (-1) for Ta2O5, while with chemical control, for CuO, 118.0049 plus-minus 10 kJ.mol (-1) was obtained and for Ta2O5 a value of 119,131 plus-minus 10 kJ.mol (-1). Values consistent with what is presented in the literature, being higher in models with chemical premise than in diffusion models. Physical aspects were also considered and, based on the Reynolds number found (Re = 0,26 - laminar flow), a control of mixed nature possible for both oxides was reinforced.
Descrição: Arquivo:   
COMPLETE PDF