Título: | KINETIC MODELLING OF CUO AND TA2O5 CHLORINATION WITH TETRACHLOROETHYLENE | ||||||||||||
Autor: |
EDUARDO TEIXEIRA DE VASCONCELLOS |
||||||||||||
Colaborador(es): |
ROGERIO NAVARRO CORREIA DE SIQUEIRA - Orientador |
||||||||||||
Catalogação: | 04/JAN/2021 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51095&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51095&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.51095 | ||||||||||||
Resumo: | |||||||||||||
Chloride roasting is a process widely used in the field of extractive metallurgy,
especially with regard to obtaining metals. Studies show that from
a gaseous chlorinating agent and the incorporation of a reducing agent
in the system, both the kinetics and the thermodynamics of the reactions
are stimulated. In this context, organochlorine compounds, such as
CCl4 and C2Cl4, stand out as promising candidates for the replacement of
Cl2. The present study performs a thermodynamic evaluation of the processes
from speciation diagrams for equilibrium, as well as the modeling
of kinetic data associated with the chlorination of copper oxide (CuO - 923
K to 1173 K) and tantalum pentoxide (Ta2O5 - 1073 K to 1223 K), in an atmosphere
of C2Cl4 diluted in N2, using equations already consolidated in
the context of gas-solid reaction modeling (shrinking core, auto-catalytic
and Avrami). The models of the shrinking core with diffusional control by
the ash layer and chemical control, were the two that presented better
quality adjustments. The diffusional model showed global activation energy
for the CuO of 71.5592 plus-minus 10 kJ.mol (-1) and 62.2606 plus-minus 10 kJ.mol (-1)
for Ta2O5, while with chemical control, for CuO, 118.0049 plus-minus 10 kJ.mol (-1)
was obtained and for Ta2O5 a value of 119,131 plus-minus 10 kJ.mol (-1). Values
consistent with what is presented in the literature, being higher in models
with chemical premise than in diffusion models. Physical aspects were
also considered and, based on the Reynolds number found (Re = 0,26
- laminar flow), a control of mixed nature possible for both oxides was
reinforced.
|
|||||||||||||
|