Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: MODELING OF SUSPENSION COPOLYMERIZATION OF POLY(VINYL ACETATE-CO-METHYL METHACRYLATE) FOR VASCULAR EMBOLIZATION PROCEDURES
Autor: JOAO GONCALVES NETO
Colaborador(es): AMANDA LEMETTE TEIXEIRA BRANDAO - Orientador
GUSTAVO DIAS AZEVEDO - Coorientador
Catalogação: 22/DEZ/2020 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50990&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50990&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.50990
Resumo:
The treatment of vascularized tumors through vascular embolization is sensible to the polymeric particles used during procedure. These embolic agents have attributes, like size and morphology, which play a significant role on the success of this technique and can promote complications when not well dimensioned. Among the many options available, spherical particles of poly(vinyl acetate-co-methyl methacrylate) present most desired characteristics after alkalyne hydrolysis treatment. Being relatively new, the literature lack studies related to the kinetics of production of this material. Therefore, this research investigated the copolymerization kinetics of poly(vinyl acetate-co-methyl methacrylate) production. In the mathematical development, the method of moments was used assuming quasi-steady state for the free radical species. Additionally, the model includes the viscous effects through the diffusion of the involved molecules, which is usually accounted empirically. It was possible to use the physical properties of the monomers as well as the homopolymerization kinetic parameters in the copolymerization. However, as reported in the literature, some parameters are sensible to the system and some viscous effects affect the copolymerization differently. Therefore, some parameters were reestimated. It was possible to predict the conversion, average molecular weights and composition. Consequently, the model was capable of representing the kinetics of the suspension copolymerization of poly(vinyl acetate-co-methyl methacrylate), meaning it could be used to improve the production of this polymer as an embolic agent for vascular embolization procedure. As far as known by the author, this is the first study to successfully perform the kinetic modeling of this specific system.
Descrição: Arquivo:   
COMPLETE PDF