Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: FORECASTING EMPLOYMENT AND UNEMPLOYMENT IN US. A COMPARISON BETWEEN MODELS
Autor: MARCOS LOPES MUNIZ
Colaborador(es): MARCELO CUNHA MEDEIROS - Orientador
Catalogação: 12/NOV/2020 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50302&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50302&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.50302
Resumo:
Forecasting employment and unemployment is of great importance for virtually all agents in the economy. Employment is one of the main variables analyzed as an economic indicator, and unemployment serves to policy makers as a guide to their actions. In this essay, I study what features of both series we can use on data treatment and methods used to add to the forecasting predictive power. Using an AR model as a benchmark, I compare machine (Random Forest and Adaptive Lasso) and deep (Long Short Term Memory) learning methods, seeking to capture non-linearities of both series dynamics. The results suggests that an AR model with a Random Forest on residuals (as a way to separate linear and non-linear part) is the best model for employment forecast, while Random Forest and AdaLasso with Random Forest on residuals were the best for unemployment forecast.
Descrição: Arquivo:   
COMPLETE PDF