Título: | FORECASTING EMPLOYMENT AND UNEMPLOYMENT IN US. A COMPARISON BETWEEN MODELS | ||||||||||||
Autor: |
MARCOS LOPES MUNIZ |
||||||||||||
Colaborador(es): |
MARCELO CUNHA MEDEIROS - Orientador |
||||||||||||
Catalogação: | 12/NOV/2020 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50302&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50302&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.50302 | ||||||||||||
Resumo: | |||||||||||||
Forecasting employment and unemployment is of great importance
for virtually all agents in the economy. Employment is one of the main
variables analyzed as an economic indicator, and unemployment serves to
policy makers as a guide to their actions. In this essay, I study what features
of both series we can use on data treatment and methods used to add to the
forecasting predictive power. Using an AR model as a benchmark, I compare
machine (Random Forest and Adaptive Lasso) and deep (Long Short Term
Memory) learning methods, seeking to capture non-linearities of both series
dynamics. The results suggests that an AR model with a Random Forest
on residuals (as a way to separate linear and non-linear part) is the best
model for employment forecast, while Random Forest and AdaLasso with
Random Forest on residuals were the best for unemployment forecast.
|
|||||||||||||
|