Título: | TRAJECTORY OPTIMIZATION FOR HYBRID WHEELED-LEGGED ROBOTS IN CHALLENGING TERRAIN | ||||||||||||
Autor: |
VIVIAN SUZANO MEDEIROS |
||||||||||||
Colaborador(es): |
MARCO ANTONIO MEGGIOLARO - Orientador |
||||||||||||
Catalogação: | 10/NOV/2020 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: |
THESIS
![]() |
||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50271&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=50271&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.50271 | ||||||||||||
Resumo: | |||||||||||||
Wheeled-legged robots are an attractive solution for versatile locomotion
in challenging terrain. They combine the speed and efficiency of wheels with
the ability of legs to traverse challenging terrain. In general, the challenges
with wheeled-legged locomotion involve trajectory generation and motion control
for trajectory tracking. This thesis focuses in particular on the trajectory
optimization task for wheeled-legged robots navigating in challenging terrain.
For this, a motion planning framework is proposed that optimizes over the
robot’s base position and orientation, and the wheels’ positions and contact
forces in a single planning problem, taking into account the terrain information
and the robot dynamics. The robot is modeled as a single rigid-body, which
allows to plan complex motions for long time horizons and still keep a low
computational complexity to solve the optimization quickly. The knowledge of
the terrain map allows the optimizer to generate feasible motions for obstacle
negotiation in a dynamic manner, at higher speeds. Such motions cannot be
discovered without taking into account the terrain information. Two different
formulations allow for either purely driving motions, where obstacle negotiation
is enabled by the legs, or hybrid driving-walking motions, which are able
to overcome discontinuities in the terrain profile. The optimization is formulated as a Nonlinear Programming Problem (NLP) and the reference motions
are tracked by a hierarchical whole-body controller that computes the torque
actuation commands for the robot. The trajectories are verified on the quadrupedal robot ANYmal equipped with non-steerable torque-controlled wheels
in simulations and experimental tests. The proposed trajectory optimization
framework enables wheeled-legged robots to navigate over challenging terrain,
e.g., steps, slopes, stairs, while negotiating these obstacles with dynamic motions.
|
|||||||||||||
|