Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: RETURN-MAPPING ALGORITHMS FOR ASSOCIATIVE PLASTICITY USING CONIC OPTIMIZATION
Autor: HUGO BASTOS DE SA BRUNO
Colaborador(es): LUIZ FERNANDO CAMPOS RAMOS MARTHA - Orientador
IVAN FABIO MOTA DE MENEZES - Coorientador
Catalogação: 17/SET/2020 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=49451&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=49451&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.49451
Resumo:
This work presents a mathematical programming approach for elastoplastic constitutive initial boundary value problems. Considering associative plasticity, the local discrete constitutive equations are formulated as conic programs. Specifically, it is demonstrated that implicit return-mapping schemes for well-known yield criteria, such as the Rankine, von Mises, Tresca, Drucker-Prager, and Mohr-Coulomb criteria, can be expressed as secondorder and semidefinite conic programs. Additionally, a novel scheme for the numerical evaluation of the consistent elastoplastic tangent operator, based on a first-order parameter derivative of the optimal solutions, is proposed.
Descrição: Arquivo:   
COMPLETE PDF