Título: | PILOT PROJECT: CONCENTRATION PROFILE OF REGULATED AND UNREGULATED POLLUTANTS EMITTED FROM THE COMBUSTION OF BIOFUEL ORIGINATING OF A DIESEL CYCLE ENGINE | ||||||||||||
Autor: |
BEATRIZ SILVA AMARAL |
||||||||||||
Colaborador(es): |
ADRIANA GIODA - Orientador MARIA DA CONCEICAO VANDERLEY RAMOS - Coorientador |
||||||||||||
Catalogação: | 14/JUL/2020 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48989&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48989&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.48989 | ||||||||||||
Resumo: | |||||||||||||
The emissions of fossil fuels derived from oil have a significant impact on the
environment, climate change, air pollution, and others. Therefore, there is great
interest in alternative energy sources, especially those that can reduce emissions of
air pollutants. The aim of this study was the evaluation of concentration profiles of
criteria pollutants, particulate matter (PM) and CO2 and unregulated pollutants (i.e.,
benzene, toluene, ethylbenzene, xylenes, polycyclic aromatic hydrocarbons (PAH),
aliphatic hydrocarbons, aldehyde and metals) originated from burning of different
fuels: The evaluated fuels were the binary mixture of fossil diesel with 5 percent biodiesel
(B5), biodiesel soybean (B100), additivated biodiesel soybean (B100 adt) and
additivated ethanol using a stationary diesel engine cycle, operating at the speed of
1800 rpm and 0 percent load. For a larger reliability of results, the method validation for
determination the monoaromatic and aldehydes by gas chromatography flame
ionization detection (GC-FID) and high-performance liquid chromatography
(HPLC), respectively. PM mass was determinate by gravimetry, PAH associated to
the PM were determined by gas chromatography coupled to mass spectrometry
(GC-MS), aliphatic hydrocarbons were determined by GC-FID, and metals were
determined by inductively coupled plasma mass spectrometry (ICP-MS). The
concentration profiles were evaluated considering: 1) burning time (15, 30, and 60
minutes) and; 2) storage time (7, 14, and 21 days) at 40 Celsius Degrees to evaluate the oxidative
processes that occur during storage, especially for biodiesel. When it is still cold
(i.e., 15 minutes), the operation of the engine showed negative effect on particulate
matter (PM), benzene, and ethylbenzene emissions for B100 compared to B5. In
this study, the concentration profiles of the monoaromatic, aliphatic hydrocarbons,
and PAH showed similar results to those reported in the literature, where B5 fuel
emits more pollutants than pure biodiesel. However, comparing some pollutants
individually, the benzene and ethylbenzene emissions were higher for B100 and
B100 adt. For long engine operation periods, B5 showed the highest concentration
profile for the PAH sum in the gaseous in comparison to PAH sum in the particulate
phase. The storage time reduced the PM emissions in 40 percent (B100), 20 percent (B100
adt), and 3 percent (B5). Regarding the concentration of aromatics, the reduction was
circa 60 percent for B100 and B100 adt. The lowest emission of pollutants was observed
for additived ethanol burning.
|
|||||||||||||
|