Título: | THREE-COMPONENT LIQUID VELOCITY FIELD MEASUREMENTS IN TURBULENT, GAS-LIQUID, INTERMITTENT FLOWS IN HORIZONTAL PIPES | ||||||||||||
Autor: |
RODRIGO DOS SANTOS NAVARRO DE MESQUITA |
||||||||||||
Colaborador(es): |
LUIS FERNANDO ALZUGUIR AZEVEDO - Orientador |
||||||||||||
Catalogação: | 30/JUN/2020 | Língua(s): | PORTUGUESE - BRAZIL |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48846&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48846&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.48846 | ||||||||||||
Resumo: | |||||||||||||
The analysis of gas-liquid intermittent flow in horizontal pipes is of great
relevance importance due its applications in many industrial problems, such
as in the petroleum industry, boiler and heat exchanger tubes and cooling
systems of nuclear power plants. A considerable number of experimental and
analytical studies have been carried out on the pursuit of a deeper knowledge
of this complex phenomenon. The present work describes an experimental
study of a horizontal, gas-liquid pipe flow in the intermittent regime.
Experimental techniques such as high frequency stereoscopic particle image
velocimetry (SPIV ) and laser induced fluorescence (LIF), were applied in
order to obtain all three components of the velocity vector at different pipe
sections, referred to the gas bubble nose tip. A 40mm inner diameter,
17.7m long acrylic pipe was used as test section (L/D approximately 450). The
working fluids, water and air formed the intermittent flow pattern, with
superficial velocities of jL equal 0.3, 0.4 and 0.5 m/s and jG equal 0.5 m/s.
A set of three photogate sensors, equally-spaced along the pipe, were
used to measure the bubble translational velocities, and to trigger the
SPIV system, allowing for the determination of ensemble-averaged, threecomponent
velocity fields of the turbulent liquid flow in cross-stream planes
around the gas bubble. The original data obtained revealed the influence of
the faster-moving gas bubbles on the dynamics of the liquid velocity field,
providing valuable information that contribute to a better understanding of
the physics governing the flow, also serving for the validation of numerical
simulations.
|
|||||||||||||
|