Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: DEVELOPMENT OF MATHEMATICAL MODELS FOR THE EVALUATION OF CORROSION PROCESS IN THE PRINTED CIRCUIT BOARDS
Autor: TAMIRES PIMENTEL BEZERRA
Colaborador(es): BRUNNO FERREIRA DOS SANTOS - Orientador
Catalogação: 24/JUN/2020 Língua(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48750&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=48750&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.48750
Resumo:
The increased consumption of consumer electronics and the development of technology has led to the emergence of a range of products with different features, increasingly complex and smaller. Printed circuit boards (PCIs) are considered the main part of electronic devices, with copper being their elementary component. The design and thickness of the circuit tracks are crucial to characterize the passage of electric current in electronic equipment and its operation is directly linked to the quality of the circuit tracks. This work aims to study the copper leaching process through the reaction of hydrochloric acid, copper chloride II and airflow. In addition to investigating the optimal experimental conditions of the process, which has as its main feature the possibility of regeneration and reuse of the solution. Models to evaluate the effect of acid concentration and airflow on PCB corrosion were developed by applying experimental design (by the classical method and by the genetic algorithm in polynomial models) and artificial neural networks. Aiming to find the best experimental conditions for the proposed system, besides investigating the best prediction technique. The results obtained by the predictions were compared with the actual experimental results. The modeling was compared by analysis of correlation coefficients (R2) and error indices (SSE, MSE, and RMSE). Noting that the polynomial model was the most appropriate to predict the response. Through investigation of the response surface and contour curves, the optimized conditions for the process were identified. Of which the optimal concentrations of hydrochloric acid, copper chloride II and airflow were 1 mol.L-1, 0.3 mol.L-1 and 0.5 L / min, respectively.
Descrição: Arquivo:   
COMPLETE PDF